NeckWatcher: A Real-time Monitoring Tool for the Assessment of the Neck Posture

Iryna Trygub, Johanna Ahlf, Martina Campanale, André Jeworutzki, Jan Schwarzer

Background

- Poor sitting posture at a computer put more weight on the neck [1].
- Studies have shown that working in a low-screen setup with an increased neck flexion angle is a risk factor for, e.g., neck pain and headaches [1, 2].

 Musculoskeletal symptoms and diseases are experienced by 4–50% of individuals who spend 3–5 hours a day in front of a computer [3].

Office workers have, in comparison to other professions, a prevalence for neck-shoulder pain (40–70%) and lower-back pain (35–40%) [2].

NeckWatcher

 NeckWatcher is an attempt to cope with these issues. It is a realtime, vision-based tool that utilizes a single webcam, alerts users about an incorrect neck posture, and promotes a healthier sitting position (see Figure 1).

Method

- An experimental setup was created to gather data, which included a table, a laptop equipped with an integrated webcam, a side camera, a wall poster displaying angles ranging from 0–60°, and a wooden pointer attached to a hairband for determining the user's neck angle (see Figure 2).
- Overall, five participants (2 males, 3 females) were recruited for our experiment and data were recorded using the webcam displayed in Figure 1. We collected data for healthy (0–30°) and unhealthy (30–60°) postures in two distinct sessions.
- MediaPipe Pose was used to extract landmarks from the videos, while we concentrated on landmarks of the shoulders, the mouth, the brows, the eyes, and the nose (see Figure 1).

Results

- The model was tested for 25 epochs with a test set of 15,774 entries (20%), randomly selected from the dataset before training.
- The model achieved an average accuracy of 84.4%, with a F1 score of 79%, precision of 99%, and recall of 66%.
- The low value of recall suggests that there was a notable number of false negatives (the model was more likely to misclassify unhealthy postures as healthy).

- The development process of NeckWatcher, consisted of the following three objectives:
 - Conducting a review of existing methods and technologies for the tracking of the neck posture to determine their advantages, disadvantages, and limitations.
 - Based on that, developing a user-friendly standalone tool that utilizes a single webcam to monitor the neck posture in real-time.
 - Identifying the limitations of this tool and exploring ways for its future improvement.

- A dataset was created, consisting of 78,871 entries with 27-dimensional feature vectors and corresponding labels
- A fully-connected neural network with 9 hidden layers and 1 output layer was trained and used to determine healthy and unhealthy postures.

(healthy or unhealthy).

Future Work

There are several ways to improve NeckWatcher, for instance:

- Involving a broader range of participants with different body proportions to make the dataset more diverse and representative.
- Recording videos with angle ranges of circa 0–28° and 32–60° to better differentiate between healthy and unhealthy postures.
- Providing a user-friendly API.

References

 Hobeom Han, Hyeongkyu Jang, and Sang Won Yoon. 2020. Novel Wearable Monitoring System of Forward Head Posture Assisted by Magnet-Magnetometer Pair and Machine Learning. In *IEEE Sensors Journal*, 20, 7. pp. 3838–3848.

 Our work's main contribution is an effective posture tracking solution that provides a convenient and practical tool that does not require complex setups for its daily use.

Figure 2. The experimental setup in our laboratory used to collect data.

- [2] Alberto Marcos Heredia-Rizo, Pascal Madeleine, and Grace P.Y. Szeto. 2022. Chapter 27 - Pain mechanisms in computer and smartphone users. In *Features and Assessments of Pain, Anaesthesia, and Analgesia,* Rajkumar Rajendram, Vinood B.Patel, Victor R. Preedy, and Colin R. Martin (Eds.) Academic Press. pp. 291–301.
- [3] Jheanel Estrada and Larry Vea. 2017. Sitting posture recognition for computer users using smartphones and a web camera. In *TENCON 2017 - 2017 IEEE Region 10 Conference*. pp. 1520–1525.

